Technology
Requirements for
Customized Ablation

Farid Karimian M.D
Department of Ophthalmology
Labbafinejad Medical Center
Course on “Topography & Orbscan”

XVth Congress of Iranian Society of Ophthalmology
October 2005
Technology Requirements for Customized Corneal Ablation

- Accurate wavefront measurement device
- Precise and robust eye tracking
- Scanning Spot Laser Delivery
- Wavefront- Laser interface
Accurate Wavefront Measurement Devices

Wavefront aberration information is collected and measured by four different principles:

1. Outgoing refractive aberrometry
2. Retinal imaging aberrometry (Tscherning)
3. Incoming Adjustable Refractometry (Scheiner)
4. Double Pass Aberrometry (Slit Skiascopy)
1- Outgoing Refractive Aberrometry

Shack- Hartman wavefront sensor

Low energy laser
→ Reflection from fovea
→ Optical structures of the eye
→ Array of lenslets to a small spot
 each segment of focused
 wavefront

CCD detection array → ocular aberration
1- Outgoing Refractive Aberrometry

Limitations:

- Multiple scattering from subfoveal Choroidal structures
- Crossover of focused spots in highly aberrated eyes
- Does not take quality of individual spots formed by lenslet array
Shack-Hartman Devices

- Alcon LADARWave: 170 spots within 6.5 mm pupil
- VISX Wave Scan: 180 spots within 6 mm pupil
- Schwind aberrometer
- Bausch & Lomb Zywave: 70 spots within 6mm pupil
- Meditec WASCA: 800 spots within 7mm pupil

Note: Approximately 200 spots within 7 mm pupil is adequate
2- Retinal Imaging Aberrometry

- Tscherning and Ray Tracing: subjective measurement of monochromatic aberration
- Seiler used a spherical lens to project 1 mm grid pattern onto retina
- **Principle:** 13x13 spot grid (168 spot)

Projection through 10mm cornea

100 spots within 7mm pupil

Paraxial aperture system
2- Retinal Imaging Aberrometry (cont)

- **Limitation**: Use of an idealized eye model (Gullstrand model I)
- **Ray tracing**: Nearly 100 sequential spots traced within 12ms within 7mm pupillary area
- **Examples**: Wavelight analyzer Tracey Ray Tracing
3- Ingoing Adjustable Refractometry (Scheiner)

(Spatially-Resolved Refractometer: SRR)

- Subjective redirection of 37 peripheral beams of incoming light toward central target

- **Limitation**: time consuming procedure

Example: Interwave SRR

XVth Congress of Iranian Society of Ophthalmology
October 2005
4- Double Pass Aberrometry (Slit Skiascopy)

- Considers passage of light into the eye + reflection of light out of the eye
- Rapid scanning a slit of light along a specific axis (Skiascopy)
- Captured fundus reflection: parallel photodetectors
- 360 meridia- 4 spot on each meridian=1440 data point
4- Double pass aberrometry (Slit Skiascopy) (Cont)

Limitation:
- Small amount of collected axial information
- Sequential nature of capture

Example: Nidek OPD-scan
II-Scanning Spot Laser Delivery

1. Scanning spot size

Huang et al:

- Treating up to 4th order aberrations requires a spot beam diameter of 1 mm or less
- Up to 6th order aberrations correction: requires 0.6mm spot size
<table>
<thead>
<tr>
<th>Laser Device</th>
<th>Spot size (mm)</th>
<th>Scanning Rate (HZ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LADARVision</td>
<td>0.8</td>
<td>60</td>
</tr>
<tr>
<td>Lasersight</td>
<td>0.6</td>
<td>200</td>
</tr>
<tr>
<td>Wavelight</td>
<td>0.95</td>
<td>200</td>
</tr>
<tr>
<td>Schwind</td>
<td>1.0</td>
<td>200</td>
</tr>
<tr>
<td>Zeiss Meditec (MEL 80)</td>
<td>0.7</td>
<td>250</td>
</tr>
<tr>
<td>B & L Technologs 217Z</td>
<td>2+0.8</td>
<td>100</td>
</tr>
<tr>
<td>VISX STAR S4</td>
<td>2+1</td>
<td>>10</td>
</tr>
<tr>
<td>Nidek EC-5000 CXII</td>
<td>2+0.8</td>
<td>200</td>
</tr>
</tbody>
</table>
2- Scanning Spot Shape (Profile)

- **Guassian Beam profile**: LADARVision, Laser sight, Wavelight, Schwind, Zeiss Meditec
- **Truncated Guassian beam**: Bausch & Lomb Technolas 217
- **Top hat beam profile**: VISX STAR S4
- The most desirable profile is Guassian beam:
 * very uniform overlap
 * Avoids abrupt edges
3. Scanning Spot Rate

- Majority of small spot Gaussian profile lasers:
 - 200Hz
 - *Alcon LADARVision*: 60Hz

- Importance of rate:
 - *Slow rate* → *stromal dehydration*
 - *Higher rate > eye tracking* → *misplaced beams*
 - *volume ablated per shot* → *ablation time*
Advantages of Scanning Spot Delivery

- Reduction of steep central island formation in respect to broad beam
- Increased surface smoothness due to perfect overlap
- Reduction in Stress waves: in broad beam lasers:
 * 40-80 atmospheres on cornea
 * Pressure focus 7-8mm posterior to endothelium
III- Fast Eye Tracking

Fixation- related eye movements:

Frequent saccadic eye movements

1- random
2- ∼5/second
3- rapid distance traversed
III – Fast Eye Tracking... cont

Tracking Definitions

1. Sampling rate: Number of measuring the eye’s location 60-4000Hz

2. Latency: * Time required to determine eye’s location
 - required response calculation
 - laser tracker mirror move

- Videocamera-based tracking
 16.67ms (NTSC) to 20mS (PAL)

- Total processing delay: 33ms (NTSC) to 40ms (PAL)
3-Eye Tracker Types

<table>
<thead>
<tr>
<th>Method of eye tracking</th>
<th>Laser radar</th>
<th>Charged-coupled device (CCD)/infrared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser system</td>
<td>LADARVision</td>
<td>B&L Technololas (120)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nidek (60 to 200)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VISX, Laser sight (60)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wavelight, Zeiss Meditec (250)</td>
</tr>
<tr>
<td>Transmitted signal</td>
<td>905 nm diode</td>
<td>None</td>
</tr>
<tr>
<td>Detection frequency</td>
<td>4000 Hz</td>
<td>60,120,250 Hz</td>
</tr>
<tr>
<td>Response time</td>
<td>3.0 ms rise time</td>
<td>50ms rise time</td>
</tr>
</tbody>
</table>
4- Closed vs Open Loop Tracking

- **Open loop tracking** (Video) → new pupil image
 → comparison with old image
 → single error calculation → mirror movement

- **Closed loop** (laser-radar) system → 905 nm laser signal → 4 (pupil) contrast boundaries
 → variable sized spots
 → Immediate readjustment
IV - LASER-Wavefront Interface

First step: Wavefront Capture & Comparison:
- Capturing the most accurate and reproducible wavefront
- Multiple captures comparisons generation of a composite map
- In Alcon LADARWave aberrometer 5 measurements

Three closest in agreement

Composite profile

XVth Congress of Iranian Society of Ophthalmology
October 2005
Second Step

Conversion to Ablation Profile:

- Ablation profile is fundamentally inverse of wavefront error map
- **Goal:** Correction of refractive error and higher-order aberrations
- Pupil diameter at least 0.5mm larger than scotopic
- Limbal marking for cyclotorsion detection
- Wavefront measurement + corneal curvature + biomechanics \(\rightarrow\) ablation profile complex
Final Step: Dynamic Registration

- Ablation profile → laser shot pattern

Customized Laser Correction

- Alignment with Center of undilated pupil
- Dynamic registration → engagement of eye tracker
Dynamic Registration: Final Step (Cont)

- First reticle → limbus ring alignment (X,Y)

- Second reticle → cyclotorsion alignment with limbal markings

- B&L Technolas 217z: iris detail used for registration and tracking
Process of Registration

Most important technology requirement for customized ablation of HOA

Required criteria for ideal registration and tracking:

Lateral Decentration

- $<50 \mu$ 1 degree for ideal wavefront ablation
- $<200 \mu$ 4 degrees: for achieving results consistent with best 10% of untreated normal
- $<400 \mu$ 10 degrees: only duplicate preop imagequality

Torsional Alignment
What can be the Future of Wavefront Customized Corneal Surgery?
Future of wavefront diagnostics

- Improving accurate measurement and diagnosis above current devices (6-10th Zernike order)
- Measuring Corneal Wavefront aberration and surface changes
- Measurement of aberrations by non-Zernike (Fourier?) algorithms
The Future of Customization

“Zonal reconstruction”: providing accurate representation of the underlying data set, minimize noise, take multiple measurements

More sophisticated clinical aberrometer

greater density of lenslets

multiple sampling over time

adaptive optic capabilities
Future of Customized Corneal Ablation

LASIK vs Surface Ablation

- Each microkeratome induces specific “flap only” aberration (flap size, thickness)
- Considering “flap aberrations” in total treatment calculations
Surface Ablations:
- Show promising results with use of
 - immunomodulating agents
 - Better control of cellular and biochemical reactions
- Introduction of new drugs to better regulate wound healing and Refractive Outcome
- Gene therapy for better control of post laser keratocyte activation and wound healing
Multifocal Ablation

- Presbyopia: Customized multifocal ablation
- Aberrations may be induced when creating multifocality
- Potential loss of contrast sensitivity and quality of visual function
- Future results will be improved:
 * Wavefront mapping, sophisticated eye trackers corneal registration
 * Preoperative simulation of postop condition
Laser Delivery Refinements

- Correction of higher orders of aberration needs smaller spot delivery
- >5th order requires 0.6-0.8mm spot size
- Smaller spot size needs faster and better eye trackers
- Smaller ablation depth per pulse provides ideal correction profile for higher orders
Laser Delivery Refinements

- Katana solid state excimer laser: very small spot (0.2 mm), rapid laser delivery rate, rapid eye tracker (even rotational)
- Accurate registration: iris recognition by B&L Technolas, VISX
Environmental- Interface Corneal Ablation Control

- Environmental factors: temperature, humidity, physical variables of cornea
- Operating suite control: already done
- Microenvironment (around cornea) control: essential for outcome predictability
- Online pachy- and topography for intraoperative control: more precise
Adaptive Corneal Correction

- Intraoperative measurement of refractive and ablation profile of the eye
- *Not* possible with LASIK or surface ablation
- **Adaptive LTK**: real-time intraoperative measurement of wavefront errors
- Developing threshold for certain refractive and Wavefront outcome: stop treatment when ablation corrected and goal reached
Customized Corneal Ablation

- Customized LASIK & PRK will dominate in next few years
- Speedy recovery, good quality of vision satisfactory outcome
- Disadvantage of conventional refractive surgery in some patients:
 - Increase in HOA
 - Reduction in visual quality
Customized Corneal Ablation

Advantage of customized corneal ablation:
- Reduction of HOA
- Sharper contrast
- Superior visual outcomes

Customized corneal procedures seems to remain an option for next two decades
Wavefront Customized Visual Correction

Ocular wavefront sensing:
+ Will be increasingly employed
+ Will become routine in vision assessment

Wavefront customization is employed to optimize any Refractive Surgery procedure
Wavefront Customized Visual Correction (cont)

Future wavefront customized refractive procedures

- Implantation of optimized IOL’s e.g Technis aspheric lens
- Customized IOL’s preinsertion, customized phakic IOL’s
Wavefront Customized Visual Correction (cont)

Customized IOL’s post-insersion:
- Calhoun laser adjustable lens
- Customized adaptive correction
- Accommodating IOL customization
- Capsular filling customization
- Customized corneal inlay/on-lays
- Photophaco reduction and modulation
Conclusion

- Wavefront measurement devices and consequently wavefront correction procedures are still in process of evolution

- Achievement of "supervision": with advancement in current procedures will not be a dream in near future
Thank You for Your Kind Attention!!